
Chapter 5

Testing the Biofeedback Pointer
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5.1 Introduction

There are two basic questions about the Biofeedback Pointer which can only be answered empirically.

The first is: Is the neural network adaptable enough that the Biofeedback Pointer can be used by different

people? The second is: How well does the Biofeedback Pointer work compared to other graphic input

devices? In order to answer these questions, a series of short tests were administered to 3 people to de-

termine their indices of performance on a standard PC mouse and the Biofeedback Pointer. This would

determine if the Biofeedback Pointer can adapt to different users and the range of performance one can

expect from it.

In addition to the two main questions, there is the question of the structure of the neural network.

Are there any trends in the weights from person to person, or even with the same person who has trained

it more than once? Any trends discovered could be used to improve the neural network and thereby the

performance of the Biofeedback Pointer. Comparing the networks generated by the subjects in the tests

might show some potentially exploitable patterns.

5.2 Materials

5.2.1 The Mouse

The mouse used in this experiment was a two-button MicrosoftTM serial, PS/2 compatible mouse. The

mouse was used in the right hand on a mouse pad. All input was performed using the left button.

5.2.2 The Biofeedback Pointer

The Biofeedback Pointer was used as described in Section 3.3, with one exception: The device was de-

signed only for moving a pointer, not for selection. Selection is intended to ultimately be done by using

the shift buttons on the Chording Glove, but this was impractical for the performance tests, since it would

provide much more hardware and software than would be necessary. Instead of using the Chording Glove,

a mouse was held in the subject’s left hand and was used to activate the buttons. Since the mouse was

held, and not placed on a surface, it had no effect on the pointer’s motion. This was found to be sufficient

for the tests.

3M Red Dot pediatric electrodes were used in the tests. In preparation for use, the last cm of

the electrode was cut off to fit properly in the amplifier. One of each pair of electrodes was marked with

the number of the corresponding amplifier.

5.2.3 The Performance Test Window Setup

The performance test was run using the EMG pointer software (see Appendix H) on a Pentium 133MHz

computer in the Windows 95 environment. EMG data was read and filtered in software during both the

mouse and Biofeedback Pointer trials. Even though this data was ignored in the mouse trials, calculating

it ensured that any software delays brought about due to the computationally intensive calculations of the

data filtering would be the same for both input devices.

The test window consisted of 30 near-square buttons of various sizes and positions (Figure 5.1). In

addition there was one button labelled “Done” in the middle, which was disabled throughout the trial.



5.3. Method 111

Figure 5.1: The button arrangement in the Performance Test window

When the trial was finished, the “Done” button would enable, requiring the subject to press it to end the

trial.

In the Windows 95 environment, a click on a button widget is registered only when the pointer has

stopped on the button. If the pointer is moving while clicking on a button, the focus is changed to the

button, but it is not activated. There are few problems with this when using a mouse, because, in practice,

the user always stops moving before clicking on a button. The mouse trials kept this standard method for

button activation.

The Biofeedback Pointer could not activate buttons in the above manner. When using the Biofeed-

back Pointer, the user merely slows down when clicking on a button. Using the original method, the

button would only become the focus, requiring the user to make a second or third pass before slowing

down enough to have the click activate the button. As a consequence the behaviour of the environment

had to be changed to accommodate the Biofeedback Pointer. The buttons in the performance test window

were adjusted so that any click on a button would register as a full press and activate the button.

5.3 Method

The experiment consisted of two parts. In the first part, at least 2 trials were performed using the mouse.

From these trials the mouse’s index of performance was calculated. These same trials were repeated using

the Biofeedback Pointer to calculate its index of performance.

The mouse trials consisted of just the performance test, as described in Section 5.3.2 below. No train-

ing or practice was necessary. Before the Biofeedback Pointer trials, the subject would need to train the

pointer’s neural network and then practice using the pointer. Training was done by the method described
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in Section 3.3.4. After training, the subject would practice using the pointer until they stated that they

felt comfortable with it. During the practice, if the subject was not satisfied with the performance, they

could retrain the pointer. However, the subject was not allowed to retrain after the first trial had started.

This was to ensure that the same neural network was used for each trial. Each subject performed at least

four trials.

5.3.1 The Subjects

There were three subjects used in the tests. Two of the subjects were female and one male. Different sexes

were used because there are significant differences in amplitude and frequency distribution of EMGs be-

tween males and females (Cioni et al., 1988). All of the subjects were right handed and the right arm

was used in all trials with the mouse and Biofeedback Pointer. In addition all the subjects had used the

Biofeedback Pointer at least once before these tests. This was to help minimise the effects of the sub-

ject being unfamiliar with the device. Subject C was a computer science graduate student who had used

the Biofeedback Pointer once before. Subject B had only a passing familiarity with computers and had

also used the Biofeedback Pointer once before. Subject A was the author and had used the Biofeedback

Pointer many times before.

Daily Preparation

Before each day of testing, the battery was tested. If it was significantly less than 9 volts it was replaced

with a fresh one. This was to ensure that the amplifiers were giving their maximum performance. The

next step would be to prepare the electrodes by clipping the ends and numbering them. After that the

EMG collection hardware would be turned on and attached to the ADC on the parallel port. The last step

before attaching the electrodes was to load and run the EMG Pointer software.

The electrodes were attached to the right arm in their standard locations (see Section 3.3.3). The

reference electrode was placed over the acromium process in the right shoulder. The other electrodes were

placed in the following locations: 1 - flexor carpi radialis, 2 - extensor digitorum, 3 - flexor carpi ulnaris,

4 - extensor carpi ulnaris (Figure 5.2). The electrodes would be attached by the following procedure:

1. The data collection on the EMG Pointer software is turned on. This displays the input from each

of sensors on the monitor (see Appendix H for more details).

2. The subject is asked to place the reference electrode over “the bony part” of their right shoulder.

The subject was allowed to do this because exact positioning of this electrode is not important.

3. The experimenter attaches each electrode in turn by palpating the muscles in the subject’s arm and

then positioning the electrodes to give the best reading of the EMG displayed on the computer mon-

itor.

The component box was usually attached to the subject’s belt to keep it secure and out of the way.

If the subject did not have a belt, they usually placed it in their lap while performing the test. This was

not a problem as the subject would be sitting for the duration of the test.
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Figure 5.2: The position of the electrodes on the forearm
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5.3.2 The Performance Test

The performance test is made up of a series of button-pressing tasks of varying levels of difficulty. In

each task, one of the blank buttons, selected at random is marked by a large yellow dot accompanied by

an audible beep. When this occurs, the subject moves the pointer over the button and presses it as quickly

as possible. The test then pauses for a random amount of time between 0.5 to 2 seconds before the next

task. This is repeated 40 times. When the last task is completed, the “Done” button enables, accompanied

by a beep. When the subject presses it, the window closes and the trial is over.

The software saves the beginning and ending time of each task, along with the entire path of the

pointer during the test. In addition the neural network used for each subject is saved.

5.4 Results

5.4.1 Training

Each subject started to train the Biofeedback Pointer as soon as they were connected. After it was trained

they were told to move around the pointer and see if they were happy with how it worked. If they were

unhappy with it, they were allowed to retrain. Subjects B and C retrained twice, and subject A retrained

three times before being satisfied with the neural network.
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Figure 5.3: Calculating the effective width of the target. is the starting position, is the centre of
the target. The vector from to is the approach vector. The point at which the approach vector
intersects the target is . is twice the distance from to .
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5.4.2 Index of Performance

Calculating

The width ( ) in Fitts’ law is a one-dimensional term. The buttons in the performance test were two-

dimensional with varying aspect-ratios ranging from 0.90 to 1.391. MacKenzie (1992) addresses this

problem and describes a few methods for determining the effective width. One common method de-

scribed in the paper is to take the larger of the height or the width. This method was deemed too sim-

plistic, despite its popularity and was passed over in favour of the method of using the span of the target

along the approach vector. The approach vector is defined as the line from the position at the start of the

task to the centre of the button. In this method, described in Figure 5.3, the approach vector is clipped

against the button’s edge. Twice the distance from the clipping point to the centre of the button is . The

specific details of the calculation are described in Appendix E.

Mouse

The Index of Performance (IP) for the mouse was calculated by the method described in Section 2.3.1.

This consisted of finding the line which best fits the plot described by the movement time (MT) plotted

against the index of difficulty (ID). IP is calculated by the inverse of the slope of the line. The y-intercept

( ) corresponds to the reaction time.

The values for IP were 9.03 0.56, 6.63 0.96, and 5.65 0.66, which average to 7.10. The

reaction times were (in ms): 504 72.0, 647 76.0, and 759 24.1, which average to 637. These can

be seen in Figures 5.4(a)–5.4(c).

The values for the mouse described in MacKenzie (1992) range from = 1030 and IP = 10.4 to

1Except for the “Done” button which has an aspect ratio of 3.26
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= 108 and IP = 2.6. The values for IP and from the experiment fit into this range well enough to be

considered valid. The exact value of IP for the mouse is not as important as its relation to the IP for the

Biofeedback Pointer.

Biofeedback Pointer

The IP for the Biofeedback Pointer was calculated in the same manner as for the mouse. The plots for

each subject can be seen in Figures 5.5(a)–5.5(c). Table 5.1 summarises the values of IP and for each

subject. As the table shows, the IP for the Biofeedback Pointer rages from 11% to 18% of mouse’s IP,

averaging at 14%. The y-intercept value tends to vary much more, ranging from 27% to 219% of the

mouse’s value.

Table 5.1: Comparison of performance results for the Biofeedback Pointer and mouse

Mouse Biofeedback
Pointer

Ratios

Subject
IPM M IPB B IPB IPM B M

mean mean mean mean mean mean

A 9.03 0.56 759 24 1.59 0.145 720 200 0.177 0.019 0.949 0.265

B 6.63 0.96 504 72 0.967 0.118 1101 454 0.146 0.028 2.186 0.953

C 5.65 0.66 647 76 0.611 0.053 174 503 0.108 0.016 0.270 0.779

Average 7.10 0.75 637 62 1.06 0.112 665 408 0.144 0.012 1.135 0.420

5.4.3 The Neural Networks

Figure 5.6: The neural networks weights used in the experiment for each subject. The offset is shown on
the left of each set

Each neural network consists of 66 weights. One set of 33 weights for the network and the other

33 weights for the network. The first value in both sets of 33 weights is the offset value, which is added

to the sum of the product of each weight and its input. The remaining 32 values consist of 4 groups of

8. Each group corresponds to one sensor, or more specifically, one muscle. The 8 values in each group

are the weights for the power of the muscle’s EMG spectrum which falls in the corresponding frequency

bin. The value of all the weights for each subject are shown in Figure 5.6.
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Figure 5.7: The average and standard deviation of the weights of 4 neural networks generated by subject

A

In examining the weights we are looking for three potentially exploitable trends. The first is a consis-

tency over the entire set of weights from one session to another, or one person to another. If the variation

in the value of weights is small, this would indicate that averaging the weights together could improve

the accuracy of the network. The second trend comes from determining if specific muscles tend to have

larger or smaller weights. This would indicate the importance of the muscle to the overall network, and

whether or not it is actually necessary to measure the muscle. The third possibility is a relationship be-

tween the weights and frequencies. It could be possible that certain frequencies are more important than

others. For example, if the high frequencies turn out to be unimportant, a lower sampling rate can be used.

To start off, we examine the variation in weights for a single subject. Figure 5.7 shows the average

and standard deviation of the weights for 4 networks trained by subject A. All of these networks were

trained on the same day, without moving any electrodes. The solid bar shows the average value while the

striped bar shows the standard deviation.

If the value of a weight is completely random, then the average of different sets would be zero. A

significantly non-zero average shows that the weight is consistent between sessions. There are only 5

values out of the 64 weights which might be significantly different from zero at the 5% level. The origin

of the and offsets is at (270,250), indicating that these values are not significant at the 5% level. The

only inference one can make from this plot is that the high variability of individual weights means that a

linear combination of multiple sets of weights will not yield a more accurate neural net.

Figure 5.8 shows the sum of the absolute values of all the weights for each muscle. This is averaged

over the 4 networks generated by subject A. The absolute value is used to determine the importance of

each muscle, not the effect. As the graph shows, the variation of each of the weights is much smaller

than Figure 5.7 , with mean to standard deviation ratios ranging from 2.4 to 9.2. The height of the bar
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Figure 5.8: The total of the absolute values of
all the weights for each muscle, averaged over
the 4 neural networks produced by subject A

Figure 5.9: The total of the absolute values of
each frequency bin, averaged over the 4 neural
networks produced by subject A

is related to how much amplification the muscle needs. The ECU and FCU have smaller EMGs. The

weights of the ECU are also small, implying that it has a small effect on the pointer. The FCU has a large

weight, which means it is amplified by a fair amount. This could mean the FCU has anywhere from a

small to a very large influence on the pointer, depending on the values of the EMG and the signs of the

individual weights. The FCR has a large EMG which means that it is likely that the FCR has a large effect

with regards to the pointer motion, but, like the FCU, it cannot be shown from these data alone. Another

interesting point to note is that the muscles have a more-or-less equal relative importance in the and

networks.

Figure 5.9 shows the weights grouped by frequency range. This is averaged over the 4 networks

generated by subject A. The mean to standard deviation ratio of this plot is smaller than Figure 5.8, with

a range from 2.1 to 5.7. The shape of the plot may be due to the fact that the spectra have higher amplitudes

at lower frequencies, which drop off at high frequencies. This could imply that all frequencies of the

muscle are important, but this cannot be known without further data.

Since there are trends in the neural networks which are consistent for one person, it begs the question

if similar trends also can be found when comparing the neural networks generated by different people.

The above analysis was applied to the neural networks generated by all the subjects in order to see if the

same patterns, or any new ones emerged.

Two neural networks were used for each subject, one was used during the performance test, and one

from a previous time. Both networks were recorded on different days, thus the electrode positioning may

not have been exactly the same. All six networks were averaged together in the same manner as above.

Figure 5.10 shows the average and standard deviation for all 3 pairs of networks for each subject. None

of the values are significantly different from zero. This indicates that it is unlikely that there can be a

“perfect” set of weights for everyone.

Comparing total weights for each muscle for all subjects (Figure 5.11) to that of just one subject

(Figure 5.8) shows that the differences from person to person are larger than for an individual, which is

what we would expect. An interesting point to note is that the plots for the and networks have similar

shapes, quite similar to the pattern for a single subject (Figure 5.8).
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Figure 5.10: The average of the neural networks of all the subjects

Figure 5.11: The total weights for each muscle,
averaged over all subjects

Figure 5.12: The total weights for each fre-
quency bin, averaged over all subjects

Figure 5.12 groups the weights by frequency range. Higher frequencies tend to have larger weights,

and the and networks have similar shapes. There is a larger level of variation in the weights as com-

pared to the frequency plot for a single person (Figure 5.9), but the overall shape is fairly similar.

5.5 Discussion

The Biofeedback Pointer was adaptable enough to be used by three different people. The neural network

was able to cope with the individual differences between the subjects to provide an interface that each of

them could use. While the tests were performed using too few people to generalise that the Biofeedback

Pointer can be used by anyone, no problems have been identified which could prevent an able bodied

person from using it. Further research must be done to observe the effects of differing body types (i.e.

various levels of fat and muscle) on the device.

An analysis of the weights in the neural network showed certain trends when looking at the effect of

muscles and frequency distribution. It was found in the overall analysis that there was too much variation
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Figure 5.13: Relative performance on various graphic input devices. The colours are used to help differ-
entiate between experiments. Notes: A = MacKenzie & Oniszczak (1998); B = I. Scott MacKenzie &
Buxton (1991); C = Epps (1986); D = Card et al. (1978); E = Mithal & Douglas (1996); F (a–c) = This
experiment (subjects a–c)
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in each weight for an average of the weights to have any meaning. This means that multiple neural net-

works cannot be combined to create a more accurate network. In the muscle analysis it was determined

that the ECU has the least influence over the outcome. This supports the theory mentioned in Section 3.3.2

that only 3 muscles are necessary to provide the 2 degrees of freedom. The frequency analysis shows that

the weights are larger at higher frequencies. Since the high frequencies are low power, the larger weights

are most likely to compensate for this. This implies that all frequencies are important to the final outcome.

Had this been otherwise, and the higher frequencies had a low influence, then the EMGs could be sampled

at a lower rate, which would be less computationally expensive and could use a slower ADC. As it stands,

the full kilohertz sampling is necessary and a fast processor is required to handle all the computations.

The subjects’ performance on the Biofeedback Pointer averaged at just over their performance

with a mouse, which is fairly low compared to most graphic input devices (Figure 5.13). The implication

is that, in its current version, the Biofeedback Pointer is not adequate to be used as a general pointer input.

According to the chart, the Biofeedback Pointer’s IP is also about half of the trackpad, which is a graphic

input device common with notebook computers. This implies that the performance of the Biofeedback

Pointer is not far off from an acceptable level. The Biofeedback Pointer does show promise and further

research must be done to improve its performance by at least a factor of two.


